If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-16x+3=0
a = -2; b = -16; c = +3;
Δ = b2-4ac
Δ = -162-4·(-2)·3
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{70}}{2*-2}=\frac{16-2\sqrt{70}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{70}}{2*-2}=\frac{16+2\sqrt{70}}{-4} $
| 8(x^2-2x+4)=2x(x+1)-8 | | 1/3x+5=x+5 | | 4x+2(-x+3)=14 | | -u/3=47 | | 5x+4+132=180 | | 2/n;n=1/8 | | -6k-1=2+7k | | 6x-1+9x-23=180 | | 3/4(2a − 6) + 1/2 = 2/5(3a + 20) | | 7(8x-9)+4(3x+4)=6(6x-14)-3(25-6x) | | 3x6=6+12 | | 23x+1=23x+12x+3 | | -52-5n=8+8n | | 20/30=12x | | 4.5=y/2 | | 2/5x-59=55 | | 4(q−83)=20 | | 1/3.5=2.3x | | 11.3x+12.8=7.5x35.6 | | t-4.60=43.40 | | -9-6v=2v+14 | | Y=x^2-10x-40 | | 991=891+n | | 3(x-5)+1=2=x | | 107+49+58+x=360 | | 38-6v=V=24 | | 43/5n=115 | | 4x+3.2=15.6 | | 77-n=48 | | 6z+8=3z-32 | | −4(x+5)=53(3x−12) | | 3(x+1)=2x-)4-x) |